2015년 11월 3일 화요일

Logarithm law 3

log (x*y) = log (x) + log a (y)

The derivation of this law is a bit trickier than the first two. Firstly, we need to relate x and y to the base a. So, assume that x = a ^ (m) and y = a ^ (n).

log a (x) = m
log a (y) = n

This means that we can write:
log (x*y) = log a ( a^(m) . a^(n) )
                = log a ( a ^ (m+n) )
                = log a ( a ^ ( log (x)+log (y) )
                = log a (x) + log a (y)

For example, show that
log ( 10 * 0.1 ) = log 10 + log 0.1
                       = log ( 1 )
                       = log ( 10 ^ (0) )
                       = 0

log ( 10 * 1 ) = log 10 + log 1
                       = log ( 10 )
                       = log ( 10 ^ (1) )
                       = 1

log ( 10 * 10 ) = log 10 + log 10
                       = log ( 100 )
                       = log ( 10 ^ (2) )
                       = 2

log ( 10 * 100 ) = log 10 + log 100
                       = log ( 1000 )
                       = log ( 10 ^ (3) )
                       = 3